Course Title: Differential Geometry	Number of Units:1
SSD : MAT03	CFU: 6
Course aims: To provide students with a good understanding of the concepts and methods of differential geometry aimed at solving engineering problems.	
Course Description: space. Tangent bundle and vector fields. Vector bundles. Differentials.	
Cotangent bundle and differential forms. Tensor algebra. Tensor bundles and tensor fields.	
Flux of a vector field. Lie derivative and Lie bracket. Integration on manifolds. Closed and exact	
forms. Stokes Theorem. Connections on a vector bundle. Covariant derivative. Riemannian	
structures and Levi-Civita connection. Geodetics.	
Assumed Background: Linear Algebra at undergraduate level	
Assessment methods: : Oral examination.	