Course Title: Advanced Linear Algebra	Number of Units: 1
---------------------------------------	--------------------

SSD: MAT03											CFU :6						
~		F	• •		1				1			1.	0.1	1	. 1	0	

Course aims: To provide students with a good understanding of the concepts and methods of advanced linear algebra aimed at solving engineering problems.

Course Description: Symmetric bilinear and hermitian forms. Diagonalization of symmetric bilinear forms and Gauss algorithm. Sylvester's theorem. Tensor products of vector spaces. Symmetric tensors. Orthonormal bases and Gram-Schmidt process. Normal matrices. Spectral theorem. Projectors and spectral decomposition of Normal matrices. Hadamard's inequality. Gram matrices. Singular Value Decomposition. Matrix norms. Spectral norm. Exponential of a matrix. Dynamic mode decomposition of a linear system. Polar decomposition and Classical groups. LU, Choleski and QR factorizations.

Assumed Background: Linear Algebra at undergraduate level

Assessment methods: Oral examination.