

Fill in for each course/integrated course included in the curriculum

Course: Numerical Methods	Teaching Language: English
SSD (Subject Areas): Mathematics, Mathematics	al CREDITS: 9
Engineering	[in the case of an integrated course,
[in the case of an integrated course, indicate the SSDs in ea	ach module] indicate the ECTs for each module]
Course year: 2022-2023 Type of Educational Activity: [1, 2, 3 o 4 (si veda manifesto)]	
Contents extracted from the SSD declaratory list consistent with the learning objectives of the	
course:	
Vector spaces and norms. Fundamental Theorem of Linear Algebra. Least Squares and	
Regularization. Real World Problems. Singular Value Decomposition. Real Problems-Data-driven	
analysis. Pseudoinverse. Principal Component Analysis. Real World Problems. Linear Discriminant	
Analysis. Iterative methods for linear systems. The Power Method. The Richardson iteration. The	
Banach Lemma and approximate inverses. Jacobi, Gauss Seidel. Preconditioning. Projectors. QR	
factorization and Gram-Schmidt Orthogonalization. Cholesky Factorization. Iterative methods in	
the Krylov subspace. Conjugate Gradient, GMRES, ARNOLDI. Problems. Solution of nonlinear	
algebraic systems. Newton's method, Chord method. Newton's GMRES. Applications to Scientific	
Machine Learning: Gaussian Process Regression.	
Learning objectives:	
The course provides fundamental methodologies of numerical analysis, that constitute the basis	
for the numerical solution of many problems in science and engineering. Such methods provide	
also the basis of scientific machine learning. The course contains frontal lessons, computer	
laboratory and seminars.	
Pre-requisites: Linear Algebra	
Is a pre-requisite for: Numerical Methods	
Types of examinations and other tests:	
3-4 Problem Sets. Final Oral Examination	